We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Multichannel ECG Data Compression Based on Multiscale Principal Component Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sharma, L.N. ; Dept. of Electron. & Electr. Eng., Indian Inst. of Technol. Guwahati, Guwahati, India ; Dandapat, S. ; Mahanta, A.

In this paper, multiscale principal component analysis (MSPCA) is proposed for multichannel electrocardiogram (MECG) data compression. In wavelet domain, principal components analysis (PCA) of multiscale multivariate matrices of multichannel signals helps reduce dimension and remove redundant information present in signals. The selection of principal components (PCs) is based on average fractional energy contribution of eigenvalue in a data matrix. Multichannel compression is implemented using uniform quantizer and entropy coding of PCA coefficients. The compressed signal quality is evaluated quantitatively using percentage root mean square difference (PRD), and wavelet energy-based diagnostic distortion (WEDD) measures. Using dataset from CSE multilead measurement library, multichannel compression ratio of 5.98:1 is found with PRD value 2.09% and the lowest WEDD value of 4.19%. Based on, gold standard subjective quality measure, the lowest mean opinion score error value of 5.56% is found.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:16 ,  Issue: 4 )