Cart (Loading....) | Create Account
Close category search window
 

Automatic Segmentation of Polyps in Colonoscopic Narrow-Band Imaging Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ganz, M. ; Kensignton Centre, Medicsight PLC, London, UK ; Xiaoyun Yang ; Slabaugh, G.

Colorectal cancer is the third most common type of cancer worldwide. However, this disease can be prevented by detection and removal of precursor adenomatous polyps during optical colonoscopy (OC). During OC, the endoscopist looks for colon polyps. While hyperplastic polyps are benign lesions, adenomatous polyps are likely to become cancerous. Hence, it is a common practice to remove all identified polyps and send them to subsequent histological analysis. But removal of hyperplastic polyps poses unnecessary risk to patients and incurs unnecessary costs for histological analysis. In this paper, we develop the first part of a novel optical biopsy application based on narrow-band imaging (NBI). A barrier to an automatic system is that polyp classification algorithms require manual segmentations of the polyps, so we automatically segment polyps in colonoscopic NBI data. We propose an algorithm, Shape-UCM, which is an extension of the gPb-OWT-UCM algorithm, a state-of-the-art algorithm for boundary detection and segmentation. Shape-UCM solves the intrinsic scale selection problem of gPb-OWT-UCM by including prior knowledge about the shape of the polyps. Shape-UCM outperforms previous methods with a specificity of 92%, a sensitivity of 71%, and an accuracy of 88% for automatic segmentation of a test set of 87 images.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:59 ,  Issue: 8 )

Date of Publication:

Aug. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.