By Topic

MicroGrid Operation and Design Optimization With Synthetic Wins and Solar Resources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cristian Bustos ; Pontificia Univ. Catolica de Chile, Santiago, Chile ; David Watts ; Hui Ren

Microgrids have been significantly developed, enhanced by concerns about climate change and energy security, their decreasing costs and the development of renewable energy sources. However, an important concern is the limited information available to estimate these renewable resources. We develop an optimization model with cost and reliability objective functions for the design and operation of micro-networks using a nested strategy and limited resource information. Design optimization utilizes Genetic Algorithms and 2 objective functions: Expected Energy Not Supplied EENS and Levelized Cost of Energy. In addition, Green House Gas (GHG) emissions are estimated. Operational optimization utilizes Generating Sets Search Algorithm. We include models for wind turbines, solar panels, fuel cells, diesel generators, gas turbines, and battery banks. We address the limited data available for these applications by synthesizing series of wind and solar radiation with basic statistical parameters. Pareto-Optimal trade-off curves between cost and reliability are presented here for an example network.

Published in:

IEEE Latin America Transactions  (Volume:10 ,  Issue: 2 )