Cart (Loading....) | Create Account
Close category search window

Fast delay estimation with buffer insertion for through-silicon-via-based 3D interconnects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Young-Joon Lee ; Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Sung Kyu Lim

For successful adoption of through-silicon-via-based 3D ICs, delay estimation techniques of 3D interconnects for early design stages are required. The 3D nets may connect gates/macros placed far apart and through-silicon-vias (TSVs) have large parasitic capacitances. Thus, buffers are inserted to reduce interconnect delay. To make good decisions in early design stages, the estimation of buffered delay should be fast and reasonably accurate. However, there has been no buffered delay estimation work for 3D ICs that considers proper delay models and TSV RC parasitics. In this work, we investigate several analytical delay models for 3D net delay estimation. Then, based on analytical formula and our heuristic algorithm, we propose how to estimate the buffered delay for movable TSV cases and fixed TSV cases. The effectiveness of our delay estimation technique is demonstrated with various 3D nets. Compared with the van Ginneken buffer insertion based delay estimation, our estimation provides solutions about 750 times faster with almost the same estimated delay.

Published in:

Quality Electronic Design (ISQED), 2012 13th International Symposium on

Date of Conference:

19-21 March 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.