Cart (Loading....) | Create Account
Close category search window
 

A review of the Solar Probe Plus dust protection approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Mehoke, D.S. ; Appl. Phys. Lab., Johns Hopkins Univ., Laurel, MD, USA ; Swaminathan, P.K. ; Carrasco, C.J. ; Brown, R.C.
more authors

The Solar Probe Plus (SPP) spacecraft will go closer to the Sun than any manmade object has gone before, which has required the development of new thermal and micrometeoroid protection technologies. During the 24 solar orbits of the mission, the spacecraft will encounter a thermal environment that is 50 times more severe than any previous spacecraft. It will also travel through a dust environment previously unexplored, and be subject to particle hypervelocity impacts (HVI) at velocities much larger than anything previously encountered. New analytical methodologies and designs have been developed to meet this environment's extreme micrometeoroid protection challenge while also fulfilling the mission's low mass requirement. These new analytical capabilities and protection system concepts could produce similar benefits if applied to Earth orbiting and deep space missions. The SPP dust study was developed to overcome the velocity limitations in the existing micrometeoroid and orbital debris (MMOD) analysis capability. In this study, we developed the hydrocode modeling techniques needed to characterize the material behaviors for a high-shock particle impact event. An additional novel development was an algorithm to calculate the particle flux on specific spacecraft surfaces. Our approach predicts particle impacts for a given spacecraft geometry, including the aforementioned effects. In addition, our approach introduces a size-velocity particle correlation, which lowers the shielding needed for a given protection level. This paper covers the new analytical capabilities developed for the SPP dust environment and how they dramatically lower the mass of the protective systems. The paper also discusses the application of these new analytical capabilities to spacecraft protection in the LEO debris field.

Published in:

Aerospace Conference, 2012 IEEE

Date of Conference:

3-10 March 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.