Cart (Loading....) | Create Account
Close category search window
 

Efficient Overdetection Elimination of Acceptable Faults for Yield Improvement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kuen-Jong Lee ; Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Tong-Yu Hsieh ; Breuer, M.A.

Acceptable faults in a circuit under test (CUT) refer to those faults that have no or only minor impacts on the performance of the CUT. A circuit with an acceptable fault may be marketable for some specific applications. Therefore, by carefully dealing with these faults during testing, significant yield improvement can be achieved. Previous studies have shown that the patterns generated by a conventional automatic test pattern generation procedure to detect all unacceptable faults also detect many acceptable ones, resulting in a severe loss on achievable yield improvement. In this paper, we present a novel test methodology called multiple test set detection (MTSD) to totally eliminate this overdetection problem. A basic test set generation method is first presented, which depicts a fundamental scheme to generate appropriate test sets for MTSD. We then describe an enhanced test generation method that can significantly reduce the total number of test patterns. Solid theoretical derivations are provided to validate the effectiveness of the proposed methods. Experimental results show that in general an 80%-99% reduction in the number of test patterns can be achieved compared with previous work addressing this problem.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:31 ,  Issue: 5 )

Date of Publication:

May 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.