System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Experimental Study to Improve the Focalization of a Figure-Eight Coil of rTMS by Using a Highly Conductive and Highly Permeable Medium

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Shunqi Zhang ; Inst. of Biomed. Eng., Chinese Acad. of Med. Sci., Tianjin, China ; Tao Yin ; Zhipeng Liu ; Ying Li
more authors

A method to improve the focalization of the repetitive transcranial magnetic stimulation figure-eight coil in a magnetic stimulation is presented in this paper. For the purpose of reducing the half width of the distribution curve, while improving the ratio of positive to negative electric field, a shield plate with a window and a magnetic conductor were adopted. The shield plate, which was made of highly conductive copper, focused the magnetic field into a smaller area. The magnetic inductor, which was made of highly permeable soft magnetic ferrite, strengthened the magnetic field. A group of experiments was conducted to validate the focalizing effect. Experimental results showed that the negative peak and the half width of the distribution curve reduced by using the shield plate and the magnetic conductor. Especially for to the Magstim 70 mm double coil, when the shield window was 30 × 60 mm, the ratio of positive to negative electric field could be increased 109%, while the half width of the distribution curve could be reduced about 55%.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:21 ,  Issue: 3 )