By Topic

A Parasitic Layer-Based Reconfigurable Antenna Design by Multi-Objective Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Xiaoyan Yuan ; Electr. & Comput. Eng. Dept., Utah State Univ., Logan, UT, USA ; Zhouyuan Li ; Rodrigo, D. ; Mopidevi, H.S.
more authors

A parasitic layer-based multifunctional reconfigurable antenna (MRA) design based on multi-objective genetic algorithm optimization used in conjunction with full-wave EM analysis is presented. The MRA is capable of steering its beam into three different directions (θi = -30°, 0°, 30°) simultaneously with polarization reconfigurability (Pj = Linear, Circular) having six different modes of operation. The MRA consists of a driven microstrip-fed patch element and a reconfigurable parasitic layer, and is designed to be compatible with IEEE-802.11 WLAN standards (5-6 GHz range). The parasitic layer is placed on top of the driven patch. The upper surface of the parasitic layer has a grid of 5 5 electrically small rectangular-shaped metallic pixels, i.e., reconfigurable parasitic pixel surface. The EM energy from the driven patch element couples to the reconfigurable parasitic pixel surface by mutual coupling. The adjacent pixels are connected/disconnected by means of switching, thereby changing the geometry of pixel surface, which in turn changes the current distribution over the parasitic layer, results in the desired mode of operation in beam direction and polarization. A prototype of the designed MRA has been fabricated on quartz substrate. The results from simulations and measurements agree well indicating ~8 dB gain in all modes of operation.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:60 ,  Issue: 6 )