By Topic

Machine Learning Algorithms in Bipedal Robot Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shouyi Wang ; Dept. of Ind. & Syst. Eng., State Univ. of New Jersey, New Brunswick, NJ, USA ; Chaovalitwongse, W. ; Babuska, R.

Over the past decades, machine learning techniques, such as supervised learning, reinforcement learning, and unsupervised learning, have been increasingly used in the control engineering community. Various learning algorithms have been developed to achieve autonomous operation and intelligent decision making for many complex and challenging control problems. One of such problems is bipedal walking robot control. Although still in their early stages, learning techniques have demonstrated promising potential to build adaptive control systems for bipedal robots. This paper gives a review of recent advances on the state-of-the-art learning algorithms and their applications to bipedal robot control. The effects and limitations of different learning techniques are discussed through a representative selection of examples from the literature. Guidelines for future research on learning control of bipedal robots are provided in the end.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:42 ,  Issue: 5 )