Cart (Loading....) | Create Account
Close category search window
 

Enhancement of Single-Channel Periodic Signals in the Time-Domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jensen, J.R. ; Dept. of Electron. Syst., Aalborg Univ., Aalborg, Denmark ; Benesty, J. ; Christensen, M.G. ; Jensen, S.H.

Most state-of-the-art filtering methods for speech enhancement require an estimate of the noise statistics, but the noise statistics are difficult to estimate in practice when speech is present. Thus, nonstationary noise will have a detrimental impact on the performance of most speech enhancement filters. The impact of such noise can be reduced by using the signal statistics rather than the noise statistics in the filter design. For example, this is possible by assuming a harmonic model for the desired signal; while this model fits well for voiced speech, it will not be appropriate for unvoiced speech. That is, signal-dependent methods based on the signal statistics will introduce undesired distortion for some parts of speech compared to signal-independent methods based on the noise statistics. Since both the signal-independent and signal-dependent approaches to speech enhancement have advantages, it is relevant to combine them to reduce the impact of their individual disadvantages. In this paper, we give theoretical insights into the relationship between these different approaches, and these reveal a close relationship between the two approaches. This justifies joint use of such filtering methods which can be beneficial from a practical point of view. Our experimental results confirm that both signal-independent and signal-dependent approaches have advantages and that they are closely-related. Moreover, as a part of our experiments, we illustrate the practical usefulness of combining signal-independent and signal-dependent enhancement methods by applying such methods jointly on real-life speech.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:20 ,  Issue: 7 )

Date of Publication:

Sept. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.