By Topic

Mapping a Jacobi Iterative Solver onto a High-Performance Heterogeneous Computer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Morris, G.R. ; Eng. R&D Center, US Army, Vicksburg, MS, USA ; Abed, K.H.

High-performance heterogeneous computers that employ field programmable gate arrays (FPGAs) as computational elements are known as high-performance reconfigurable computers (HPRCs). For floating-point applications, these FPGA-based processors must satisfy a variety of heuristics and rules of thumb to achieve a speedup compared with their software counterparts. By way of a simple sparse matrix Jacobi iterative solver, this paper illustrates some of the issues associated with mapping floating-point kernels onto HPRCs. The Jacobi method was chosen based on heuristics developed from earlier research. Furthermore, Jacobi is relatively easy to understand, yet is complex enough to illustrate the mapping issues. This paper is not trying to demonstrate the speedup of a particular application nor is it suggesting that Jacobi is the best way to solve equations. The results demonstrate a nearly threefold wall clock runtime speedup when compared with a software implementation. A formal analysis shows that these results are reasonable. The purpose of this paper is to illuminate the challenging floating-point mapping process while simultaneously showing that such mappings can result in significant speedups. The ideas revealed by research such as this have already been and should continue to be used to facilitate a more automated mapping process.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:24 ,  Issue: 1 )