By Topic

A Hybrid Factored Frontier Algorithm for Dynamic Bayesian Networks with a Biopathways Application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Palaniappan, S.K. ; Sch. of Comput., Nat. Univ. of Singapore, Singapore, Singapore ; Akshay, S. ; Bing Liu ; Genest, B.
more authors

Dynamic Bayesian Networks (DBNs) can serve as succinct probabilistic dynamic models of biochemical networks [1]. To analyze these models, one must compute the probability distribution over system states at a given time point. Doing this exactly is infeasible for large models; hence one must use approximate algorithms. The Factored Frontier algorithm (FF) is one such algorithm [2]. However FF as well as the earlier Boyen-Koller (BK) algorithm [3] can incur large errors. To address this, we present a new approximate algorithm called the Hybrid Factored Frontier (HFF) algorithm. At each time slice, in addition to maintaining probability distributions over local states-as FF does-HFF explicitly maintains the probabilities of a number of global states called spikes. When the number of spikes is 0, we get FF and with all global states as spikes, we get the exact inference algorithm. We show that by increasing the number of spikes one can reduce errors while the additional computational effort required is only quadratic in the number of spikes. We validated the performance of HFF on large DBN models of biopathways. Each pathway has more than 30 species and the corresponding DBN has more than 3,000 nodes. Comparisons with FF and BK show that HFF is a useful and powerful approximate inferencing algorithm for DBNs.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:9 ,  Issue: 5 )