By Topic

Construction of Binary LDPC Convolutional Codes Based on Finite Fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liwei Mu ; Dept. of Electron. & Commun. Eng., Sun Yat-sen Univ., Guangzhou, China ; Xingcheng Liu ; Chulong Liang

Using a finite field approach, a novel algebraic construction of low-density parity-check (LDPC) convolutional codes with fast encoding property is proposed. According to the matrices of quasi-cyclic (QC) codes constructed based on the multiplicative groups of finite fields and the algebraic property that a binary circulant matrix is isomorphic to a finite ring, we first generate a polynomial-form parity-check matrix of an LDPC convolutional code under a given rate over a given finite field. Then some related modifications are made upon the original polynomial-form matrix to obtain the new one with fast encoding property. Simulation results show that the proposed LDPC convolutional codes have good performance with the iterative belief propagation decoding algorithm.

Published in:

Communications Letters, IEEE  (Volume:16 ,  Issue: 6 )