By Topic

Trustworthiness Assessment of Knowledge on the Semantic Sensor Web by Provenance Integration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Umuhoza, D. ; Centre for Real Time Inf. Networks, Univ. of Technol., Sydney, NSW, Australia ; Braun, R.

Knowledge represented on the Semantic Sensor Web originates from different datasets which are often a collection or aggregation of other sources. The SSW is dynamic, open and distributed, so the datasets are of varying quality and completeness. Consumers need to be provided with a level of trustworthiness of this knowledge to determine its relevance and usefulness. Interpretation of provenance (detailed information about the origin of data - held in metadata) is necessary in order to analyse how knowledge came into existence and measure its trustworthiness. However there are challenges in interpreting the provenance in a uniform way, because different data providers use different processes to manipulate the data and different annotation techniques to provide metadata. Although there are methods for retrieving provenance, knowledge consumers are left with the responsibility of assessing the trustworthiness of discovered knowledge dependent on how they see it fitting their application. This paper proposes a meta-knowledge ontology to align the concepts and properties of existing provenance schemas and ontologies. The meta-provenance ontology enables common interpretation of different provenances, and hence their integration. This paper also presents a trustworthiness assessment model based on integrating provenance. This model provides a function for the knowledge consumer to choose the relevant provenance attributes and allows for ranking of their importance. This provides a reliable mechanism for measuring trustworthiness, as only attributes relevant to the consumer are used.

Published in:

Advanced Information Networking and Applications Workshops (WAINA), 2012 26th International Conference on

Date of Conference:

26-29 March 2012