By Topic

Separator Design of Gesture Signals Based on Adaptive Threshold Using Wearable Sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yinghui Zhou ; Grad. Sch. of Comput. Sci. & Eng., Univ. of Aizu, Aizu-Wakamatsu, Japan ; Lei Jing ; Junbo Wang ; Zixue Cheng

Gesture, especially finger gestures, can reflect various intentions of users in daily behaviors. Therefore, more and more researches are performed on recognition of finger gestures based on wearable sensors. Segmentation, detecting the Start and End of a gesture, is crucial for accurate recognition of the gesture. However it is hard to extract signal of each finger gesture timely and correctly from continuous signals of the sensor, since they are transient, noise sensitive, and with individual difference. In this paper, we design an adaptive separator employing Bayes theory and distribution statistic technology to overcome the difficulties. The separator can detect each segmentation from a series of gestures timely, correctly, and adaptive to each user.

Published in:

Advanced Information Networking and Applications Workshops (WAINA), 2012 26th International Conference on

Date of Conference:

26-29 March 2012