By Topic

Low-loss fiber-matched low-temperature PECVD waveguides with small-core dimensions for optical communication systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hoffmann, M. ; Lehrstuhl fur Hochfrequenztech., Dortmund Univ., Germany ; Kopka, Peter ; Voges, Edgar

Plasma-enhanced chemical vapor deposition (PECVD) offers a simple way of fabricating (doped) silica layers on silicon. A new design of the waveguide core allows low-loss fiber matched waveguides with low birefringence without high-temperature annealing. The increased loss of doped plasma deposited silica due to hydrogen incorporation is overcome by reducing the core dimensions and increasing the refractive index contrast. The waveguides can easily be fabricated using standard PECVD technologies and resist masked reactive ion etching (RIE) etching. Integrated optical devices such as 1/spl times/8 power splitters, 1300/1550-nm wavelength multiplexers and thermooptical switches were successfully fabricated and tested.

Published in:

Photonics Technology Letters, IEEE  (Volume:9 ,  Issue: 9 )