Cart (Loading....) | Create Account
Close category search window

Reducing RFID reader load with the meet-in-the-middle strategy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jung Hee Cheon ; Dept. of Math. Sci., Seoul Nat. Univ., Seoul, South Korea ; Jeongdae Hong ; Tsudik, G.

When tag privacy is required in radio frequency identification (ID) system, a reader needs to identify, and optionally authenticate, a multitude of tags without revealing their IDs. One approach for identification with lightweight tags is that each tag performs pseudo-random function with his unique embedded key. In this case, a reader (or a back-end server) needs to perform a brute-force search for each tag-reader interaction, whose cost gets larger when the number of tags increases. In this paper, we suggest a simple and efficient identification technique that reduces readers computation to O(√N log N) without increasing communication cost. Our technique is based on the well-known "meet-in-the- middle" strategy used in the past to attack symmetric ciphers.

Published in:

Communications and Networks, Journal of  (Volume:14 ,  Issue: 1 )

Date of Publication:

Feb. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.