By Topic

A mobile broad-band communication system based on mode-locked lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
von Helmolt, C.H. ; Heinrich-Hertz-Inst. fur Nachrichtentech. Berlin GmbH, Germany ; Kruger, U. ; Kruger, K. ; Grosskopf, G.

A concept is proposed for a pico-cellular network for broad-band mobile communication on a millimeter-wave basis. How microwave optical-signal-processing techniques based on mode-locked lasers (MLLs), optical modulators, and high-speed photo diodes (PD's) can advantageously be applied in the optical feeder lines of a pico-cellular network at 60 GHz is investigated. The external cavity MLL (at 81.25 GHz) used for the experiments showed a single-sideband (SSB) phase noise of -59 dBc/Hz at 100-Hz offset, when actively locked at 6.25 GHz. With the PD, and limited by the V-band mixer equipment, spectral harmonics up to 100 GHz could be detected. For the downlink configuration, a 400-MHz subcarrier is modulated with a 155-Mb/s data signal and upconverted to 62.9 GHz using an MLL and a fast PD. The upconverted sideband at 62.9 GHz was received with an optical power of -14.3-dBm at a bit-error-rate (BER) equal to 10-9 without any additional penalty due to transmitting the signal over 3 km of optical fiber. BER measurements at 155 Mb/s down to 10-11 were made. For the uplink, the digitally encoded RF signal is downconverted also by optical microwave signal processing. A 155-Mb/s data encoded 19.21-GHz signal is downconverted to 460 MHz using a mode-locked laser, an optical modulator, and a 600-MHz optical receiver front end. A receiver sensitivity of -24.5 dBm (BER equal to 10-9) is demonstrated with the microwave signal being transmitted over a 1-m radio link and 3 km of optical fiber

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:45 ,  Issue: 8 )