By Topic

Design, manufacturing and packaging of high frequency micro ultrasonic transducers for medical applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Ng, J.H.-G. ; Microsyst. Eng. Centre (MISEC), Heriot-Watt Univ., Edinburgh, UK ; Ssekitoleko, R.T. ; Flynn, D. ; Kay, R.W.
more authors

The challenges for the realization of a miniaturized high frequency ultrasonic transducer linear array lie in the interconnections on the fine pitch piezoceramic elements. Within the footprint the size of a needle, only peripheral interconnections can be allowed on the transducer array such that the acoustic operations on both faces of the vibrating piezoelectric elements are not obstructed. The very low maximum processing temperature allowed also poses difficulty for conventional bonding techniques. This article presents 3-dimensional packaging using spirally rolled flexible circuits, room-temperature anisotropic conductive bonding and stencil printing for the setup of a wafer-level production process flow.

Published in:

Electronics Packaging Technology Conference (EPTC), 2011 IEEE 13th

Date of Conference:

7-9 Dec. 2011