By Topic

RF Circuit Linearity Optimization Using a General Weak Nonlinearity Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wei Cheng ; Centre for Telematics & Inf. Technol. (CTIT), Univ. of Twente, Enschede, Netherlands ; Oude Alink, M.S. ; Annema, A.J. ; Croon, J.A.
more authors

This paper focuses on optimizing the linearity in known RF circuits, by exploring the circuit design space that is usually available in today's deep submicron CMOS technologies. Instead of using brute force numerical optimizers we apply a generalized weak nonlinearity model that only involves AC transfer functions to derive simple equations for obtaining design insights. The generalized weak nonlinearity model is applied to three known RF circuits: a cascode common source amplifier, a common gate LNA and a CMOS attenuator. It is shown that in deep submicron CMOS technologies the cascode transistor in both the common source amplifier and in the common gate amplifier significantly contributes IM3 distortion. Some design insights are presented for reducing the cascode transistor related distortion, among which moderate inversion biasing that improves IIP3 by 10 dB up to 5 GHz in a 90 nm CMOS process. For the attenuator, a wideband IM3 cancellation technique is introduced and demonstrated using simulations.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:59 ,  Issue: 10 )