By Topic

Online re-mesh and multi-rate deformation simulation by GPU for haptic interaction with large scale elastic objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tagawa, K. ; Ritsumeikan Univ., Kusatsu, Japan ; Yasuyuki, S. ; Tanaka, H.T.

In this paper, we propose an approach to generate high quality force and deformation using a novel automatic space and time adaptive level of detail technique in combination with a parallel computation using a graphics processing unit (GPU). The elastic object is represented by a multi-resolution hierarchy of tetrahedral adaptive volume mesh. The tetrahedral adaptive volume mesh and the time step of the deformation simulation are locally refined by online re-mesh and multi-rate simulation to concentrate the computational load into the regions that deform the most. In order to compute the online re-mesh and multi-rate deformation simulation on a GPU efficiently, we propose a novel data structure which consists of an extended and transposed connection table, a node list and a separated mass list. This effective computation is achieved by the relocatability of the connection table and optimized memory access at the computation of both deformation and re-meshing. Through evaluation experiments, we confirm the feasibility and the effectiveness of the proposed approach.

Published in:

Haptics Symposium (HAPTICS), 2012 IEEE

Date of Conference:

4-7 March 2012