By Topic

Tensor subclass discriminant analysis for radar target classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tang, N. ; Sch. of Electron. Sci. & Eng., Nat. Univ. of Defense Technol., Changsha, China ; Gao, X.Z. ; Li, X.

A novel tensor subspace learning algorithm, called tensor subclass discriminant analysis, is presented for inverse synthetic aperture radar target classification. Assuming there are multiple subclasses in each class of inverse synthetic aperture radar data, an objective function, which is based on clustering based analysis criterion and aimed at maximising the distance between subclasses of different classes, is constructed for target classification using inverse synthetic aperture radar images in the form of a tensor. Then the formula of the algorithm is deduced, and the optimal tensor projections for classification are worked out. Simulation demonstrates the effectiveness and robustness of the proposed method.

Published in:

Electronics Letters  (Volume:48 ,  Issue: 8 )