By Topic

A Globally Optimal Estimator for the Delta-Lognormal Modeling of Fast Reaching Movements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Christian O'Reilly ; Département de Génie Électrique, École Polytechnique de Montréal, Laboratoire Scribens, Montréal, Canada ; Réjean Plamondon

Fast reaching movements are an important component of our daily interaction with the world and are consequently under investigation in many fields of science and engineering. Today, useful models are available for such studies, with tools for solving the inverse dynamics problem involved by these analyses. These tools generally provide a set of model parameters that allows an accurate and locally optimal reconstruction of the original movements. Although the solutions that they generate may provide a data curve fitting that is sufficient for some pattern recognition applications, the best possible solution is often necessary in others, particularly those involving neuroscience and biomedical signal processing. To generate these solutions, we present a globally optimal parameter extractor for the delta-lognormal modeling of reaching movements based on the branch-and-bound strategy. This algorithm is used to test the impact of white noise on the delta-lognormal modeling of reaching movements and to benchmark the state-of-the-art locally optimal algorithm. Our study shows that, even with globally optimal solutions, parameter averaging is important for obtaining reliable figures. It concludes that physiologically derived rules are necessary, in addition to global optimality, to achieve meaningful ΛA extractions which can be used to investigate the control patterns of these movement primitives.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:42 ,  Issue: 5 )