Cart (Loading....) | Create Account
Close category search window
 

Monitoring Respiration and Cardiac Activity Using Fiber Bragg Grating-Based Sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dziuda, L. ; Mil. Inst. of Aviation Med., Warsaw, Poland ; Skibniewski, F.W. ; Krej, M. ; Lewandowski, J.

This paper shows the design of a fiber-based sensor for living activities in human body and the results of a laboratory evaluation carried out on it. The authors have developed a device that allows for monitoring the vibrations of human body evoked by living activities-breathing and cardiac rhythm. The device consists of a Bragg grating inscribed into a single mode optical fiber and operating on a wavelength of around 1550 nm. The fiber Bragg grating (FBG) is mounted inside a pneumatic cushion to be placed between the backrest of the seat and the back of the monitored person. Deformations of the cushion, involving deformations of the FBG, are proportional to the vibrations of the body leaning on the cushion. Laboratory studies have shown that the sensor allows for obtaining dynamic strains on the sensing FBG in the range of 50-124 μ strain caused by breathing and approximately 8.3 μstrain induced by heartbeat, which are fully measurable by today's FBG interrogation systems. The maximum relative measurement error of the presented sensor is 12%. The sensor's simple design enables it to be easily implemented in pilot's and driver's seats for monitoring the physiological condition of pilots and drivers.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:59 ,  Issue: 7 )

Date of Publication:

July 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.