By Topic

Generation of Propagating Bessel Beams Using Leaky-Wave Modes: Experimental Validation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ettorre, M. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI, USA ; Rudolph, S.M. ; Grbic, A.

We present the experimental generation of Bessel beams using a leaky radial waveguide. The radial waveguide consists of a capacitive sheet over a ground plane. The capacitive sheet is composed of patch elements printed on both sides of a dielectric substrate. The radial waveguide is coaxially fed and supports an azimuthally invariant leaky-wave mode whose normal electric-field component is a truncated, zeroth-order Bessel function. Two prototypes are presented with the same propagation constant and lateral extent, but different attenuation constants. 2D electric field measurements and their respective Fourier transforms validate the operation of the prototypes as Bessel-beam launchers at two frequency bands. Cleaner patterns are achieved by the prototype with lower attenuation constant. The dual-band capability and associated frequency dependent resolution can be useful in near-field planar focusing systems. The proposed structure can be used for generating arbitrary zeroth-order propagating Bessel beams at microwave and millimeter-wave frequencies.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:60 ,  Issue: 6 )