By Topic

A Versatile Design Strategy for Thin Composite Planar Double-Sided High-Impedance Surfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bayraktar, Z. ; Dept. of Electr. Eng., Pennsylvania State Univ. (Penn State), University Park, PA, USA ; Gregory, M.D. ; Wang, Xiande ; Werner, D.H.

A novel methodology is introduced for the design synthesis of thin planar realizations of volumetric high-impedance or artificial magnetic conducting surfaces (AMC). The design synthesis involves optimization of two different metallic frequency selective surface (FSS) type structures printed on each side of a thin dielectric substrate material. This technique eliminates the need for a complete metallic backplane common in conventional AMC designs, making use of the same dielectric substrate for two high-impedance surfaces; one on each side. Optimization of the FSS unit cell geometries is carried out with a robust genetic algorithm (GA) technique that is combined with a full-wave periodic finite element boundary integral (PFEBI) electromagnetic simulation code for fast and accurate optimization of desired AMC performance at a single frequency or over multiple frequency bands. Several examples of thin AMC ground planes are optimized for use in the X-band. Additional design examples that provide AMC behavior on one side and absorber behavior on the other are also provided. Lastly, an example illustrating the utility of the double-sided AMC separator structure is shown for a design targeting the standard Wi-Fi frequencies of 2.4 GHz and 5.2 GHz.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:60 ,  Issue: 6 )