By Topic

Compensation algorithms for sliding mode observers in sensorless control of IPMSMs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yue Zhao ; Dept. of Electr. Eng., Univ. of Nebraska-Lincoln, Lincoln, NE, USA ; Wei Qiao ; Long Wu

Electromechanical sensors are commonly used to obtain rotor position/speed for high-performance control of interior permanent magnet synchronous machines (IPMSMs) in vehicle systems. However, the use of these sensors increases the cost, size, weight, wiring complexity and reduces the mechanical robustness of IPMSM drive systems. These issues, together with some practical requirements, e.g., wide speed range, extreme environment temperature, and adverse loading conditions, make a sensorless control scheme desirable. This paper proposes an extended back electromotive force (EMF)-based sliding mode rotor position observer for sensorless vector control of IPMSMs. Based on filter characteristics, a robust compensation algorithm is developed to improve the performance of the sliding-mode observer (SMO). Multistage-filter and dual-filter schemes are designed to further improve the steady-state and transient performance, respectively, of the compensation algorithms. The proposed SMO and compensation algorithms are validated by simulations in MATLAB Simulink as well as experiments on a practical IPMSM drive system.

Published in:

Electric Vehicle Conference (IEVC), 2012 IEEE International

Date of Conference:

4-8 March 2012