By Topic

Three-Dimensional Face Reconstruction From a Single Image by a Coupled RBF Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mingli Song ; Coll. of Comput. Sci. & Technol., Zhejiang Univ., Hangzhou, China ; Dacheng Tao ; Xiaoqin Huang ; Chun Chen
more authors

Reconstruction of a 3-D face model from a single 2-D face image is fundamentally important for face recognition and animation because the 3-D face model is invariant to changes of viewpoint, illumination, background clutter, and occlusions. Given a coupled training set that contains pairs of 2-D faces and the corresponding 3-D faces, we train a novel coupled radial basis function network (C-RBF) to recover the 3-D face model from a single 2-D face image. The C-RBF network explores: 1) the intrinsic representations of 3-D face models and those of 2-D face images; 2) mappings between a 3-D face model and its intrinsic representation; and 3) mappings between a 2-D face image and its intrinsic representation. Since a particular face can be reconstructed by its nearest neighbors, we can assume that the linear combination coefficients for a particular 2-D face image reconstruction are identical to those for the corresponding 3-D face model reconstruction. Therefore, we can reconstruct a 3-D face model by using a single 2-D face image based on the C-RBF network. Extensive experimental results on the BU3D database indicate the effectiveness of the proposed C-RBF network for recovering the 3-D face model from a single 2-D face image.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 5 )