By Topic

Reducing outgoing traffic of proxy cache by using client-cluster

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kim, Kyungbaek ; Department of Electrical Engineering and Computer Science, the division of Electrical Engineering, KAIST, Daejeon, Republic of Korea ; Park, Daeyeon

Many web cache systems and policies concerning them have been proposed. These studies, however, consider large objects less useful than small objects in terms of performance, and evict them as soon as possible. Even if this approach increases the hit rate, the byte hit rate decreases and the connections occurring over congested links to outside networks waste more bandwidth in obtaining large objects. This paper puts forth a client-cluster approach for improving the web cache system. The client-cluster is composed of the residual resources of clients and utilizes them as exclusive storage for large objects. This proposed system achieves not only a high hit rate but also a high byte hit rate, while reducing outgoing traffic. The distributed hash table (DHT) based peer-to-peer lookup protocol is utilized to manage the client-cluster. With the natural characteristics of this protocol, the proposed system with the client-cluster is self-organizing, fault-tolerant, well-balanced, and scalable. Additionally, the large objects are managed with an index based allocation method, which balances the loads of all clients well. The performance of the cache system is examined via a trace driven simulation and an effective enhancement of the proxy cache performance is demonstrated.

Published in:

Communications and Networks, Journal of  (Volume:8 ,  Issue: 3 )