By Topic

Potential for High Resolution Systematic Global Surface Soil Moisture Retrieval via Change Detection Using Sentinel-1

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Hornacek, M. ; Inst. of Photogrammetry & Remote Sensing, Vienna Univ. of Technol., Vienna, Austria ; Wagner, W. ; Sabel, D. ; Hong-Linh Truong
more authors

The forthcoming two-satellite GMES Sentinel-1 constellation is expected to render systematic surface soil moisture retrieval at 1 km resolution using C-band SAR data possible for the first time from space. Owing to the constellation's foreseen coverage over the Sentinel-1 Land Masses acquisition region-global approximately every six days, nearly daily over Europe and Canada depending on latitude-in the high spatial and radiometric resolution Interferometric Wide Swath (IW) mode, the Sentinel-1 mission shows high potential for global monitoring of surface soil moisture by means of fully automatic retrieval techniques. This paper presents the potential for providing such a service systematically over Land Masses and in near real time using a change detection approach, concluding that such a service is-subject to the mission operating as foreseen-expected to be technically feasible. The work presented in this paper was carried out as a feasibility study within the framework of the ESA-funded GMES Sentinel-1 Soil Moisture Algorithm Development (S1-SMAD) project.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:5 ,  Issue: 4 )