By Topic

Vehicular Traffic Density State Estimation Based on Cumulative Road Acoustics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tyagi, V. ; IBM Res. India, New Delhi, India ; Kalyanaraman, S. ; Krishnapuram, R.

This paper considers the problem of vehicular traffic density estimation, utilizing the information cues present in the cumulative acoustic signal acquired from a roadside-installed single microphone. This cumulative signal comprises several noise signals such as tire noise, engine noise, engine-idling noise, occasional honks, and air turbulence noise of multiple vehicles. The occurrence and mixture weightings of these noise signals are determined by the prevalent traffic density conditions on the road segment. For instance, under a free-flowing traffic condition, the vehicles typically move with medium to high speeds and thereby produce mainly tire noise and air turbulence noise and less engine-idling noise and honks. For slow-moving congested traffic, the cumulative signal will largely be dominated by engine-idling noise and honks; air turbulence and tire noises will be inconspicuous. Furthermore, these various noise signals have spectral content that are very different from each other and, hence, can be used to discriminate between the different traffic density states that lead to them. Therefore, in this work, we extract the short-term spectral envelope features of the cumulative acoustic signals and model their class-conditional probability distributions, conditioned on one of the three broad traffic density states, i.e., Jammed (0-10 km/h), Medium-Flow (10-40 km/h), and Free-Flow (40 km/h and above) traffic. While these states are coarse measures of the average traffic speed, they nevertheless can provide useful traffic density information in the often-chaotic and nonlane-driven traffic conditions of the developing geographies, where other techniques (magnetic loop detectors) are inapplicable. Based on these learned distributions, we use a Bayes' classifier to classify the acoustic signal segments spanning a duration of 5-30 s, which results in a high classification accuracy of ~95%. Using a discriminative classifier such as a support vector machine (SVM) re- ults in further classification accuracy gains over the Bayes' classifier.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:13 ,  Issue: 3 )