Cart (Loading....) | Create Account
Close category search window
 

Fluidically Tunable Frequency Selective/Phase Shifting Surfaces for High-Power Microwave Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Meng Li ; Dept. of Electr. & Comput. Eng., Univ. of Wisconsin-Madison, Madison, WI, USA ; Behdad, N.

We examine fluidically tunable periodic structures acting as highly-selective frequency selective surfaces (FSSs) or spatial phase shifters (SPSs) capable of providing phase shifts in the range of 0°-360°. These devices are multi-layer periodic structures composed of non-rePsonant unit cells. The tuning mechanism is based on integrating small, movable liquid metal droplets with the unit cells of the periodic structure. By moving these liquid metal droplets by small distances within the unit cell, the structure's frequency response can be tuned continuously. Using this technique, a fluidically tunable FSS with a fifth-order bandpass response is designed and its tuning performance is examined for various incidence angles and polarizations of the incident EM wave. Additionally, electronically tunable counterparts of the same structure are also designed and their tuning performances are examined under short-duration high-power excitation conditions. It is demonstrated that such electronically tunable FSSs/PSSs demonstrate extremely nonlinear responses. Since the fluidically tunable structure examined in this work does not use any nonlinear devices, its response is expected to remain linear for such short-duration high-power excitation conditions. The tuning performances of these fluidically tunable periodic structures are also experimentally demonstrated by fabricating three prototypes and characterizing their responses in a waveguide environment.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:60 ,  Issue: 6 )

Date of Publication:

June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.