By Topic

Compositional Gradients in Cu(In,Ga)Se _{\bf 2} Thin Films for Solar Cells and Their Effects on Structural Defects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Dietrich, J. ; Department of Semiconductor Devices , Berlin University of Technology, Germany ; Abou-Ras, D. ; Rissom, T. ; Unold, T.
more authors

Cu(In,Ga)Se$_2$ (CIGSe) absorber layers used in thin-film solar cells exhibit, when grown in a multistage process, compositional gradients of Ga and In. In this study, the correlations between the Ga gradient and the microstructure are studied by means of transmission electron microscopy (TEM) imaging combined with energy-dispersive X-ray spectroscopy (EDX), allowing the determination of structural defects and elemental distributions at identical sample positions. The occurrence of linear defects (dislocations) and planar defects (stacking faults and microtwins) of CIGSe layers was studied by means of TEM images. The Ga distributions obtained from EDX elemental distribution maps and structural parameters from the literature were used to calculate the lattice parameters c and a and the gradient dc/ dx perpendicular to the substrate. We found a correlation between the magnitude of dc/dx and the occurrence of dislocations within individual large grains. From the presented results, a threshold value of the Ga gradient of 12–13at.%/μm can be estimated for the formation of misfit dislocations.

Published in:

Photovoltaics, IEEE Journal of  (Volume:2 ,  Issue: 3 )