By Topic

An anthropomorphic hand exoskeleton to prevent astronaut hand fatigue during extravehicular activities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
B. L. Shields ; Dept. of Mech. Eng., Vanderbilt Univ., Nashville, TN, USA ; J. A. Main ; S. W. Peterson ; A. M. Strauss

This correspondence presents a prototype of a powered hand exoskeleton that is designed to fit over the gloved hand of an astronaut and offset the stiffness of the pressurized space suit. This will keep the productive time spent in extravehicular activity from being constrained by hand fatigue. The exoskeleton has a three-finger design, the third and fourth fingers being combined to lighten and simplify the assembly. The motions of the hand are monitored by an array of pressure sensors mounted between the exoskeleton and the hand. Controller commands are determined by a state-of-the-art programmable microcontroller using pressure sensor input. These commands are applied to a PWM driven DC motor array which provides the motive power to move the exoskeleton fingers. The resultant motion of the exoskeleton allows the astronaut to perform both precision grasping tasks with the thumb and forefinger, as well as a power grasp with the entire hand

Published in:

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans  (Volume:27 ,  Issue: 5 )