By Topic

A Bayesian network for early diagnosis of sepsis patients: a basis for a clinical decision support system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Eren Gultepe ; Dept. of Biomedical Engineering, University of California - Davis, United States of America ; Hien Nguyen ; Timothy Albertson ; Ilias Tagkopoulos

Sepsis is a severe medical condition caused by an inordinate immune response to an infection. Early detection of sepsis symptoms is important to prevent the progression into the more severe stages of the disease, which kills one in four it effects. Electronic medical records of 1492 patients containing 233 cases of sepsis were used in a clustering analysis to identify features that are indicative of sepsis and can be further used for training a Bayesian inference network. The Bayesian network was constructed using the systemic inflammatory response syndrome criteria, mean arterial pressure, and lactate levels for sepsis patients. The resulting network reveals a clear correlation between lactate levels and sepsis. Furthermore, it was shown that lactate levels may be predicative of the SIRS criteria. In this light, Bayesian networks of sepsis patients hold the promise of providing a clinical decision support system in the future.

Published in:

Computational Advances in Bio and Medical Sciences (ICCABS), 2012 IEEE 2nd International Conference on

Date of Conference:

23-25 Feb. 2012