By Topic

Radial basis function networks, regression weights, and the expectation-maximization algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Langari, R. ; Center for Fuzzy Logic, Texas A&M Univ., College Station, TX, USA ; Liang Wang ; Yen, J.

We propose a modified radial basis function (RBF) network in which the regression weights are used to replace the constant weights in the output layer. It is shown that the modified RBF network can reduce the number of hidden units significantly. A computationally efficient algorithm, known as the expectation-maximization (EM) algorithm, is used to estimate the parameters of the regression weights. A salient feature of this algorithm is that it decomposes a complicated multiparameter optimization problem into L separate small-scale optimization problems, where L is the number of hidden units. The superior performance of the modified RB network over the standard RBF network is illustrated by computer simulations

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:27 ,  Issue: 5 )