By Topic

A target identification comparison of Bayesian and Dempster-Shafer multisensor fusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. M. Buede ; Dept. of Syst. Eng., George Mason Univ., Fairfax, VA, USA ; P. Girardi

This paper demonstrates how Bayesian and evidential reasoning can address the same target identification problem involving multiple levels of abstraction, such as identification based on type, class, and nature. In the process of demonstrating target identification with these two reasoning methods, we compare their convergence time to a long run asymptote for a broad range of aircraft identification scenarios that include missing reports and misassociated reports. Our results show that probability theory can accommodate all of these issues that are present in dealing with uncertainty and that the probabilistic results converge to a solution much faster than those of evidence theory

Published in:

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans  (Volume:27 ,  Issue: 5 )