By Topic

Extreme Maximal Weighted Frequent Itemset Mining for Cognitive Frequency Decision Making

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ji Pan-pan ; Grad. Univ. of Chinese Acad. of Sci., Beijing, China ; Liao Ming-Xue ; He Xiao-Xin ; Deng Yong

Cognitive Frequency Decision Making (CFDM) is a new application in cognitive radio ad hoc network with limited communication capability, and once solved by our algorithm Extreme Maximal Biclique Searcher (EMBS). In this paper, we extend the CFDM from one subnet to the whole network, and propose Common Frequency Searcher (CFS) to find the solution. CFS uses the result of a novel algorithm Maximal Weighted Frequent Itemset Mining (MWFIM) which is mainly discussed in this paper and also proposed by us to mine all maximal weighted frequent itemsets from transaction database of weighted items. We solve the extended CFDM problem by using the weight of item in a new fashion in which weight is independent of support and by traveling weighted itemset enumeration tree in a depth-first manner. When visiting nodes of the tree, we use two pruning conditions to speed up traveling and reduce computational time. Experimental results show that our algorithm can satisfy the CFDM application in real world at most times.

Published in:

Computer Science and Network Technology (ICCSNT), 2011 International Conference on  (Volume:1 )

Date of Conference:

24-26 Dec. 2011