By Topic

The capacity of downlink fading channels with variable rate and power

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Goldsmith, A.J. ; Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA, USA

We obtain the Shannon capacity region of the down-link (broadcast) channel in fading and additive white Gaussian noise (AWGN) for time-division, frequency-division, and code-division. For all of these techniques, the maximum capacity is achieved when the transmitter varies the data rate sent to each user as their channels vary. This optimal scheme requires channel estimates at the transmitter; dynamic allocation of timeslots, bandwidth, or codes; and variable-rate and power transmission. For both AWGN and fading channels, nonorthogonal code-division with successive decoding has the largest capacity region, while time-division, frequency-division, and orthogonal code-division have the same smaller region. However, when all users have the same average received power, the capacity region for all these techniques is the same. In addition, the optimal nonorthogonal code is a multiresolution code which does not increase the signal bandwidth. Spread-spectrum code-division with successive interference cancellation has a similar rate region as this optimal technique, however, the region is reduced due to bandwidth expansion. We also examine the capacity region of nonorthogonal code-division without interference cancellation and of orthogonal code-division when multipath corrupts the code orthogonality. Our results can be used to bound the spectral efficiency of the downlink channel using time-division, frequency-division, and code-division, both with and without multiuser detection

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:46 ,  Issue: 3 )