By Topic

Self-supervised terrain classification based on moving objects using monocular camera

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Donghui Song ; Department of Intelligent Robot Engineering, Hanyang University, Korea ; Chuho Yi ; Il Hong Suh ; Byung-Uk Choi

For autonomous robots equipped with a camera, terrain classification is essential in finding a safe pathway to a destination. Terrain classification is based on learning, but the amount of data cannot be infinite. This paper presents a self-supervised classification approach to enable a robot to learn the visual appearance of terrain classes in various outdoor environments by observing moving objects, such as humans and vehicles, and to learn about the terrain, based on their paths of movement. We verified the performance of our proposed method experimentally and compared the results with those obtained using supervised classification. The difference in error rates between self-supervised and supervised methods was about 0-11%.

Published in:

Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference on

Date of Conference:

7-11 Dec. 2011