By Topic

FPGA implementation of neural network classifier for partial discharge time resolved data from magnetic probe

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nguyen, T.N.T. ; Univ. Tenaga Nasional, Selangor, Malaysia ; Chandan, K.C. ; Ahmad, B.A.G. ; Yap, K.S.

Partial discharge (PD) is a common reason that causes electrical breakdown in high voltage underground XLPE cables. This paper proposes a concept of how to build an on-line, on-site system that is able to diagnose the severity of PD activities in XLPE cable as well as differentiate different types of PD signals. The system consists of magnetic probes, low noise amplifier, 3GSPS analog to digital converter (ADC) and a field programmable gate array (FPGA) board. The energy of PD signals is used to assess the severity of PD activities and artificial neural network (ANN) is used to classify different types of PD waveforms. In addition, wavelet transform is used to clean the time-resolved input signals and statistical method is used to extract important features of PD signals to fetch into neural network. The training of ANN is done on personal computer. The prototype and results of the research is elaborated in this paper.

Published in:

Advanced Power System Automation and Protection (APAP), 2011 International Conference on  (Volume:1 )

Date of Conference:

16-20 Oct. 2011