By Topic

Artificial neural networks with stepwise regression for predicting transformer oil furan content

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ghunem, R.A. ; Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada ; Assaleh, K. ; El-Hag, A.H.

In this paper a prediction model is proposed for estimation of furan content in transformer oil using oil quality parameters and dissolved gases as inputs. Multi-layer perceptron feed forward neural networks were used to model the relationships between various transformer oil parameters and furan content. Seven transformer oil parameters, which are breakdown voltage, water content, acidity, total combustible hydrocarbon gases and hydrogen, total combustible gases, carbon monoxide and carbon dioxide concentrations, are proposed to be predictors of furan content in transformer oil. The predictors were chosen based on the physical nature of oil/paper insulation degradation under transformer operating conditions. Moreover, stepwise regression was used to further tune the prediction model by selecting the most significant predictors. The proposed model has been tested on in-service power transformers and prediction accuracy of 90% for furan content in transformer oil has been achieved.

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:19 ,  Issue: 2 )