By Topic

On Efficient Assessment of Image-Quality Metrics Based on Linear Model Observers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wunderlich, A. ; Dept. of Radiol., Univ. of Utah, Salt Lake City, UT, USA ; Noo, F.

This paper is motivated by the problem of image-quality assessment using model observers for the purpose of development and optimization of medical imaging systems. Specifically, we present a study regarding the estimation of the receiver operating characteristic (ROC) curve for the observer and associated summary measures. This study evaluates the statistical advantage that may be gained in ROC estimates of observer performance by assuming that the difference of the class means for the observer ratings is known. Such knowledge is frequently available in image-quality studies employing known-location lesion detection tasks together with linear model observers. The study is carried out by introducing parametric point and confidence interval estimators that incorporate a known difference of class means. An evaluation of the new estimators for the area under the ROC curve establishes that a large reduction in statistical variability can be achieved through incorporation of knowledge of the difference of class means. Namely, the mean 95% AUC confidence interval length can be as much as seven times smaller in some cases. We also examine how knowledge of the difference of class means can be advantageously used to compare the areas under two correlated ROC curves, and observe similar gains.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:59 ,  Issue: 3 )