By Topic

Influence of the Earth's Magnetic Field on Large Area Photomultipliers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Aiello, S. ; INFN—National Institute of Nuclear Physics, section of Catania, Catania, ; Leonora, E. ; Grimaldi, A. ; Leotta, G.
more authors

The influence of the Earth's magnetic field on large area photomultipliers proposed for a future deep sea neutrino telescope was studied under the EU-funded KM3NeT design study. The aims were to evaluate variations in PMT performance in the Earth's magnetic field and to decide whether the use of magnetic shielding is necessary. Measurements were performed on three Hamamatsu PMTs: two 8-inch R5912 types, one of these with super bialkali photocathode, and a 10-inch R7081 type with a standard bialkali photocathode. The various characteristics of the PMTs were measured while varying the PMT orientations with respect to the Earth's magnetic field, both with and without a mu-metal cage as magnetic shield. In the 8-inch PMTs the impact of the magnetic field was found to be smaller than that on the 10-inch PMT. The increased quantum efficiency in the 8 ^{\prime \prime } super bialkali PMT almost compensated its smaller detection surface compared to the 10 ^{\prime \prime } PMT. No significant effects were measured upon transit time and the fraction of spurious pulses.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:59 ,  Issue: 4 )