By Topic

Pose and Expression Independent Facial Landmark Localization Using Dense-SURF and the Hausdorff Distance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Enver Sangineto ; Istituto Italiano di Tecnologia, Genova

We present an approach to automatic localization of facial feature points which deals with pose, expression, and identity variations combining 3D shape models with local image patch classification. The latter is performed by means of densely extracted SURF-like features, which we call DU-SURF, while the former is based on a multiclass version of the Hausdorff distance to address local classification errors and nonvisible points. The final system is able to localize facial points in real-world scenarios, dealing with out of plane head rotations, expression changes, and different lighting conditions. Extensive experimentation with the proposed method has been carried out showing the superiority of our approach with respect to other state-of-the-art systems. Finally, DU-SURF features have been compared with other modern features and we experimentally demonstrate their competitive classification accuracy and computational efficiency.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:35 ,  Issue: 3 )
IEEE Biometrics Compendium
IEEE RFIC Virtual Journal
IEEE RFID Virtual Journal