Cart (Loading....) | Create Account
Close category search window
 

Topology control algorithm using fault-tolerant 1-spanner for wireless ad hoc networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
5 Author(s)
Sun, Ruozi ; Department of Electronic Engineering, Tsinghua University, Beijing 100084, China ; Wang, Yue ; Yuan, Jian ; Shan, Xiuming
more authors

A fault-tolerant 1-spanner is used to preserve all the minimum energy paths after node failures to cope with fault-tolerant topology control problems in wireless ad hoc networks. A fault-tolerant 1-spanner is a graph such that the remaining graph after node failures will not only remain connected, but also have a stretch factor of one. The fault-tolerant 1-spanner is used in a localized and distributed topology control algorithm, named the k-Fault-Tolerant 1-Spanner (k-FT1S), where each node constructs a minimum energy path tree for every local failed node set. This paper proves that the topology constructed by k-FT1S is a k-fault-tolerant 1-spanner that can tolerate up to k node failures, such that the remaining network after node failures preserves all the minimum energy paths of the remaining network gained from the initial network by removing the same failed nodes. Simulations show that the remaining network after removal of any k nodes still has the optimal energy efficiency and is competitive in terms of average logical degree, average physical degree, and average transmission radius.

Published in:

Tsinghua Science and Technology  (Volume:17 ,  Issue: 2 )

Date of Publication:

April 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.