By Topic

Dynamic Sub-GOP Forward Error Correction Code for Real-Time Video Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Reed-Solomon erasure codes are commonly studied as a method to protect the video streams when transmitted over unreliable networks. As a block-based error correcting code, on one hand, enlarging the block size can enhance the performance of the Reed-Solomon codes; on the other hand, large block size leads to long delay which is not tolerable for real-time video applications. In this paper a novel Dynamic Sub-GOP FEC (DSGF) approach is proposed to improve the performance of Reed-Solomon codes for video applications. With the proposed approach, the Sub-GOP, which contains more than one video frame, is dynamically tuned and used as the RS coding block, yet no delay is introduced. For a fixed number of extra introduced packets, for protection, the length of the Sub-GOP and the redundancy devoted to each Sub-GOP becomes a constrained optimization problem. To solve this problem, a fast greedy algorithm is proposed. Experimental results show that the proposed ap proach outperforms other real-time error resilient video coding technologies.

Published in:

Multimedia, IEEE Transactions on  (Volume:14 ,  Issue: 4 )