By Topic

Magnetic Instability in Tunneling Magnetoresistive Heads Due to Temperature Increase During Electrostatic Discharge

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Surawanitkun, C. ; KKU-Seagate Cooperation Res. Lab., Khon Kaen Univ., Khon Kaen, Thailand ; Kaewrawang, A. ; Siritaratiwat, A. ; Kruesubthaworn, A.
more authors

Recently, there has been a growing interest in the effects of electrostatic discharge (ESD) failure on tunneling magnetoresistive (TMR) recording heads because it directly affects reliability in manufacturing of these heads. Therefore, we study the magnetic degradation in TMR junctions caused by the temperature increase using three different ESD models. A 3-D finite-element method is used for analyzing the spatial and temporal profiles of the temperature during the discharge. The results from the three models show that, although the highest temperature occurs in the MgO barrier layer, the initial magnetic modification likely arises in the IrMn antiferromagnetic layer due to its low Néel temperature. We also found that the increase in temperature is proportional to the square of the ESD voltage. The magnetic instability of the antiferromagnetic layer due to the ESD effect is the important parameter realized for development of the future TMR devices.

Published in:

Device and Materials Reliability, IEEE Transactions on  (Volume:12 ,  Issue: 3 )