By Topic

Genetic Algorithm Based Nearly Optimal Peak Reduction Tone Set Selection for Adaptive Amplitude Clipping PAPR Reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yajun Wang ; Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China ; Chen, W. ; Tellambura, C.

In tone reservation (TR) based OFDM systems, the peak to average power ratio (PAPR) reduction performance mainly depends on the selection of the peak reduction tone (PRT) set and the optimal target clipping level. Finding the optimal PRT set requires an exhaustive search of all combinations of possible PRT sets, which is a nondeterministic polynomial-time (NP-hard) problem, and this search is infeasible for the number of tones used in practical systems. The existing selection methods, such as the consecutive PRT set, equally spaced PRT set and random PRT set, perform poorly compared to the optimal PRT set or incur high computational complexity. In this paper, an efficient scheme based on genetic algorithm (GA) with lower computational complexity is proposed for searching a nearly optimal PRT set. While TR-based clipping is simple and attractive for practical implementation, determining the optimal target clipping level is difficult. To overcome this problem, we propose an adaptive clipping control algorithm. Simulation results show that our proposed algorithms efficiently obtain a nearly optimal PRT set and good PAPR reductions.

Published in:

Broadcasting, IEEE Transactions on  (Volume:58 ,  Issue: 3 )