By Topic

Knowledge Engineering for Bayesian Networks: How Common Are Noisy-MAX Distributions in Practice?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zagorecki, A. ; Dept. of Inf. & Syst. Eng., Cranfield Univ., Shrivenham, UK ; Druzdzel, M.J.

One problem faced in knowledge engineering for Bayesian networks (BNs) is the exponential growth of the number of parameters in their conditional probability tables (CPTs). The most common practical solution is the application of the so-called canonical gates and, among them, the noisy-or (or their generalization, the noisy-MAX) gates, which take advantage of the independence of causal interactions and provide a logarithmic reduction of the number of parameters required to specify a CPT. In this paper, we propose an algorithm that fits a noisy-MAX distribution to an existing CPT, and we apply this algorithm to search for noisy-MAX gates in three existing practical BN models: Alarm, Hailfinder, and Hepar II. We show that the noisy-MAX gate provides a surprisingly good fit for as many as 50% of CPTs in two of these networks. We observed this in both distributions elicited from experts and those learned from data. The importance of this finding is that it provides an empirical justification for the use of the noisy-MAX gate as a powerful knowledge engineering tool.

Published in:

Systems, Man, and Cybernetics: Systems, IEEE Transactions on  (Volume:43 ,  Issue: 1 )